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Graph: A graph G = (V, E) consists of a nonempty set of vertices (or nodes) V and a set of edges E. 
Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to 
connect its endpoints. 

UNDIRECTED GRAPH: a set of vertices and a set of undirected edges each of which is associated with 
a set of one or two of these vertices. 

 

deg (v) (degree of the vertex v in an undirected graph): the number of edges incident with v. A loop 
contributes twice to the degree of a vertex. 

Some results in undirected graphs: 

a. Handshaking theorem: The sum of the degrees of all vertices in a graph is equal to twice the 

number of edges. Thus, 2𝑒 =  ∑ deg(𝑣) ,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉. 
This shows that sum of degrees of vertices in an undirected graph is even. Handshaking 
theorem applies even if multiple edges and loops are present. 

b. An undirected graph has an even number of vertices of odd degree. 

DIRECTED GRAPH: is a set of vertices together with a set of directed edges each of which is 
associated with an ordered pair of vertices. 

 

Figure X.  A directed graph 

When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v is said 
to be adjacent from u. 
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Degree of a vertex in a directed graph: 

In-degree of a vertex [deg-(v)] is the number of edges with v as their terminal vertex (i.e. number of 
edges entering a particular vertex). 

Out-degree of a vertex [deg+ (v)] is the number of edges with v as their initial vertex (i.e. the number 
of edges leaving a particular vertex). 

The degree of a vertex in directed graph is sum of its in-degree and out-degree. A loop at a vertex 
contributes 1 to both the in-degree and the out-degree of this vertex. 

In a directed graph, sum of indegrees =  sum of outdegrees =  number of edges in the graph. 

𝑇ℎ𝑢𝑠,∑ 𝑑𝑒𝑔−(𝑣)𝑣∈𝑉 = ∑ 𝑑𝑒𝑔+(𝑣)𝑣∈𝑉 = 𝑒  

 

SIMPLE GRAPH: an undirected graph with no multiple edges or loops. 

Loop: an edge connecting a vertex with itself. 

Multi-graph: an undirected graph that may contain multiple edges but no loops. 

Pseudo-graph: an undirected graph that may contain multiple edges and loops. 

Some special simple graphs 

1. Kn (complete graph on n vertices): the undirected graph with n vertices where each pair of 
vertices is connected by an edge i.e. there is exactly one edge between each distinct vertex 
pair. 

𝑁𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑘𝑛 = 𝑛(𝑛−1)
2 = 𝐶(𝑛, 2) = 𝑛

2 .   
𝑀𝑒𝑠ℎ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑜𝑓 𝑛 𝑛𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑟𝑎𝑝ℎ. Therefore, number of 
edges/connections in this network is equal to 𝑛

2 . 

 
A clique in a simple undirected graph is a complete subgraph that is not contained in any 
larger complete subgraph (i.e. a maximal complete subgraph of a graph). 
 

2. Cn (cycle of size n), n ≥ 3: the graph with n vertices v1, v2, . . . , vn and edges {v1, v2}, {v2, v3}, . . 
. , {vn−1, vn},{vn, v1}. 
𝑁𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑐𝑛 = 𝑛.  
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3. Wn (wheel of size n), n ≥ 3: the graph obtained from Cn by adding a new vertex and edges 
from this vertex to each of the n vertices in Cn . 

𝑁𝑜. 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑊𝑛 = 𝑛 + 1 𝑎𝑛𝑑 𝑁𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 = 2𝑛.  

 
4. Qn (n-cube), n ≥ 1: the graph that has the 2n bit strings of length n as its vertices and edges 

connecting every pair of bit strings that differ by exactly one bit. 
𝑁𝑜. 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑄𝑛 = 2𝑛  𝑎𝑛𝑑 𝑁𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 = 𝑛2𝑛−1  

 

 
5. BIPARTITE GRAPH (also known as bigraph): a graph with vertex set that can be partitioned 

into disjoint subsets V1 and V2 so that each edge connects a vertex in V1 and a vertex in V2 
(no edge in G connects either two vertices in V1 or two vertices in V2). The pair (V1, V2) is 
called a bipartition of V. 
A complete graph Kn, n≥3 cannot be bipartite. 
Test for bipartition 

i. A simple graph is bipartite if and only if it is 2-colorable i.e. it is possible to assign 
one of two different colors to each vertex of the graph so that no two adjacent 
vertices are assigned the same color. 

ii. A graph is bipartite if and only if does not contain any odd length cycles. That is, it is 
not possible to start at a vertex and return to this vertex by traversing an odd 
number of distinct edges. 

Examples: 
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i. C6 is Bipartite. K 3 is not a bipartite graph. 
ii. Graph G (shown below) is bipartite because its vertex set is the union of two disjoint 

sets, {a, b, d} and {c, e, f, g}, and each edge connects a vertex in one of these subsets 
to a vertex in the other subset. (Note that for G to be bipartite it is not necessary 
that every vertex in {a, b, d} be adjacent to every vertex in {c, e, f, g}. For instance, b 
and g are not adjacent.) Alternatively, you can check it is 2-colorable. 

iii. Graph H (shown below) is not bipartite because its vertex set cannot be partitioned 
into two subsets so that edges do not connect two vertices from the same subset. 
Alternatively, you can check it is not 2-colorable. 

 

Figure X.  G is Bipartite and H is not.  

6. COMPLETE BIPARTITE GRAPH (Km,n): the graph with vertex set partitioned into a subset of m 
vertices and a subset of n vertices. There is an edge between two vertices if and only if one is 
in the first subset and the other is in the second subset. 

              𝑇ℎ𝑒 𝑛𝑜. 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝐾𝑚 ,𝑛 = 𝑚 + 𝑛 and 𝑛𝑜. 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 = 𝑚 × 𝑛.  

 

REGULAR GRAPH 

A simple graph is called regular if every vertex of this graph has the same degree.  A regular graph is 
called n-regular if every vertex in this graph has degree n. 

It can be seen that: 

i. Kn is (n-1)-regular for n≥1 because degree of each vertex in kn is (n-1). 
ii. Km,n is n-regular or m-regular for m=n≥1.Km,n is not regular if m≠n. 

iii. Cn is 2-regular for n≥3. 
iv. Wn is 3-regular for n=3. 
v. Qn is n-regular for n≥0. 
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Example: How many vertices does a regular graph of degree four with 10 edges have? 

Solution: let the number of vertices and edges be n and e respectively. 

We know, 2𝑒 =  ∑deg(𝑣) 

=> 2 × 10 = 4.𝑛  

=> 𝑛 = 20
4 = 𝟓 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔  

REPRESENTING GRAPHS 

1. Adjacency list: specifies the vertices that are adjacent to each vertex of a graph. Following 
example illustrates the adjacency list representation. 
Adjacency list for an undirected graph: 

                    
 
Adjacency list for a directed graph: 

     
 
Adjacency list provides a compact way for representing sparse graphs (i.e. graphs containing 
relatively few edges, e << n2). The representation of a sparse graph using adjacency list 
results in lot of space savings. Therefore, it is method of choice when graph is sparse. 

2. Adjacency Matrix:  
Suppose that G = (V, E) is a simple graph where |V| = n. Suppose that the vertices of G are 
listed arbitrarily as v1, v2, . . . , vn. The adjacency matrix A of G, with respect to this listing of 
the vertices, is the n x n zero–one matrix with 1 as its (i, j )th entry when vi and vj are 
adjacent, and 0 as its (i, j )th entry when they are not adjacent. In other words,  
 

A = [𝑎𝑖𝑗 ], where  aij  = 1            if {vi , vj  } is an edge of G
0                                     otherwise.

� 
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Since an adjacency matrix of a graph is based on the ordering chosen for the vertices. Hence, there 
may be as many as n! different adjacency matrices for a graph with n vertices, because there are n! 
different orderings of n vertices. 

Adjacency matrix for an undirected simple graph is symmetric, that is,𝑎𝑖𝑗  =  𝑎𝑗𝑖  

                                                

Adjacency matrix for pseudo-graphs (multiple edges and loops) is no longer a zero-one matrix, for 
example. 

                                                             

The adjacency matrix can also be used to represent digraphs (with multiple edges and loops). The 
adjacency matrix for a directed graph does not have to be symmetric, For example: 

                                                       

Finally, adjacency Matrix representation is preferred when the graph is dense (i.e. a graph 
containing many edges, e close to n2). The representation of a dense graph using adjacency matrix 
results in efficient graph algorithms. 

3. Incidence Matrices: The adjacency list and adjacency matrix are two standard ways to represent 
graphs. However there is another common way that is incidence matrix. 

Let G = (V ,E) be an undirected graph. Suppose that v1, v2, . . . , vn are the vertices and e1, e2, . . . , em 
are the edges of G. Then the incidence matrix with respect to this ordering of V and E  

is the n × m matrix M = [mij ], where 𝑚𝑖𝑗 = 1         𝑤ℎ𝑒𝑛 𝑒𝑗  𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑣𝑗
0                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

� 
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For example: 

 

Incidence matrices can also be used to represent multiple edges and loops. For example, 

   

 

CONNECTIVITY 

Path/walk: A path of length n (n≥0) from a vertex u to a vertex v in a graph G = (V, E) is a sequence   
< x0, x1, . . . , xn−1, xn > of vertices such that u = x0 , v = xn and  (xi−1 , xi)∈ E for i=1, 2, ... ,n. The path 
contains the vertices x0, x1, . . . , xn−1, xn and edges (x0,x1), (x1,x2),…, (xn-1,xn). 

Thus, path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex 
along edges of the graph. When the graph is simple we can represent this path using a vertex 
sequence (because listing these vertices uniquely determines the path). The length of the path is the 
number of edges in the path. There is always a zero length path from a vertex to itself. If there is a 
path from u to v, we say that v is reachable from u via this path. Further, a path may repeat an edge 
or vertex more than once. 

Circuit/cycle/closed walk: is a path that begins and ends at the same vertex, that is, if u = v, and has 
length greater than zero (i.e. contains at least one edge). A self-loop is a cycle of length one. A graph 
with no cycles is called acyclic graph.                                                                                                         
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Simple path/circuit: A path or circuit is simple if it does not contain the same edge more than once.

 

In the simple graph shown above, < a, d, c, f , e> is a simple path of length 4, because {a, d}, {d, c}, {c, 
f }, and {f, e} are all edges. However, <d, e, c, a> is not a path, because {e, c} is not an edge. Note that 
<b, c, f , e, b> is a circuit of length 4 because {b, c}, {c, f }, {f, e}, and {e, b} are edges, and this path 
begins and ends at b.The path <a, b, e, d, a, b>, which is of length 5, is not simple because it contains 
the edge {a, b} twice.                                                   

CONNECTIVITY IN UNDIRECTED GRAPHS 

An undirected graph is said to be connected if there is a path between every pair of distinct vertices 
of the graph i.e. if every vertex is reachable from all other vertices. An undirected graph that is not 
connected is called disconnected. 

When we remove vertices and/or edges, a disconnected graph may result. 

Thus, any two computers in the network can communicate if and only if the graph of this network is 
connected. 

Examples: In the figures given below, G1 is connected and G2 is disconnected. 

 

Connected component: 

A connected component of a graph G is a maximal connected sub-graph of G. That is, a connected 
component of a graph G is a connected sub-graph of G that is not a proper sub-graph of another 
connected sub-graph of G. 

The connected components of a graph are the equivalence classes of vertices under the “is 
reachable from” relation. The graph given below has three connected components {1, 2, 5}, {3, 6} 
and {4}. Every vertex in {1, 2, 5} is reachable from every other vertex in {1, 2, 5}. 
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Figure X.  A disconnected graph with three 

        connected components {1, 2, 5}, {3, 6} and {4}. 

 

An undirected graph is connected if it has exactly one connected component. A graph G that is not 
connected has two or more connected components that are disjoint and have G as their union.  

The figure given below shows a graph H and its three connected components H1, H2 and H3. The 
graph H is the union of three disjoint connected sub-graphs H1, H2, and H3. 

 

Cut vertices (or articulation points) and cut-edges (or bridges): 

Articulation points and bridges are the measure of a connectedness of a graph i.e. how connected a 
graph is. 

Let G=(V, E) be a connected, undirected graph. A Cut-vertex (or articulation point) of G is a vertex 
whose removal (and all edges incident with this vertex) disconnects G. A bridge or cut-edge of G is 
an edge whose removal disconnects G. (fig. X) 
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Figure X. The articulation points are the heavily shaded vertices, and the bridges are heavily 
shaded edges. 

A complete graph kn has no cut-vertex. Removal of any vertex from Kn produces a complete graph Kn-

1. Connected graphs without cut vertices are called non-separable graphs. Thus, non-separable 
graphs are more connected than those with a cut vertex. 

Vertex connectivity 

Vertex cut (or separating set): If a graph G has a cut vertex, then we need only remove it to 
disconnect G. If G does not have a cut vertex, then we look for the smallest set of vertices that can 
be removed to disconnect G.   A subset V’ of the vertex set V of G = (V, E) is a vertex cut, or 
separating set, if G – V’ is disconnected. Every connected graph, except a complete graph, has a 
vertex cut. 

Vertex connectivity of a non complete graph G, denoted by к(G), is the minimum number of vertices 
in a vertex cut. 

However, when G is a complete graph, it has no vertex cuts, because removing any subset of its 
vertices and all incident edges still leaves a complete graph. Consequently, we cannot define κ(G) as 
the minimum number of vertices in a vertex cut when G is complete. Instead, we set κ(Kn) = n − 1, 
the number of vertices needed to be removed to produce a graph with a single vertex. 

Consequently, for every graph G, κ(G) is minimum number of vertices that can be removed from G to 
either disconnect G or produce a graph with a single vertex. 

We have,  

0 ≤  𝜅(𝐺)  ≤  𝑛 −  1 if G has 𝑛 vertices, 

 𝜅(𝐺)  =  0 if and only if G is disconnected or 𝐺 =  𝐾1,  

and 𝜅(𝐺)  =  𝑛 −  1 if and only if G is complete.  

The larger κ(G) is, the more connected G is. Disconnected graphs and K1 have κ(G) = 0, connected 
graphs with cut vertices and K2 have κ(G) = 1, graphs without cut vertices that can be disconnected 
by removing two vertices and K3 have κ(G) = 2, and so on. We say that a graph is k-connected (or k-
vertex connected), if κ(G) ≥ k. A graph G is 1-connected if it is connected and not a graph containing 
a single vertex; a graph is 2-connected, or bi-connected, if it is non-separable and has at least three 
vertices.  
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Consider the graph G shown as: the graph G has no cut vertices but that {b, g} is a vertex cut. Hence, 
κ(G) = 2. 

 

Edge connectivity 

Edge cut: If a graph has a cut edge, then we need only remove it to disconnect G. If G does not have 
a cut edge, we look for the smallest set of edges that can be removed to disconnect it. A set of edges 
E‘  is called an edge cut of G if the sub-graph G – E’ is disconnected.  

The edge connectivity of a graph G, denoted by λ(G), is the minimum number of edges in an edge cut 
of G. This defines λ(G) for all connected graphs with more than one vertex because it is always 
possible to disconnect such a graph by removing all edges incident to one of its vertices. 

We have,  

𝜆(𝐺)  =  0 if G is not connected. We also specify that 𝜆(𝐺)  =  0 if G is a graph consisting of a single 
vertex. 

 If G is a graph with n vertices, then  0 ≤  𝜆(𝐺)  ≤  𝑛 −  1. 

Also,  𝜆(𝐺)  =  𝑛 −  1  where G is a graph with n vertices if and only if G = Kn, which is equivalent to 
the statement that  𝜆(𝐺)  ≤  𝑛 −  2 when G is not a complete graph. 

Note that graph G (above) has no cut edges, but the removal of the two edges {b, c} and {f, g} 
disconnects it. 

The following relation holds between vertex and edge connectivity:.  

 

CONNECTIVITY IN DIRECTED GRAPHS 

A directed graph can be either strongly connected or weakly connected. 

A directed graph is strongly connected if there is a path from a to b and from b to a whenever a and 
b are vertices in the graph i.e. if every two vertices are reachable from each other. 

A directed graph is weakly connected if there is a path between every two vertices in the underlying 
undirected graph. That is, a directed graph is weakly connected if and only if there is always a path 
between two vertices when the directions of the edges are disregarded. 

𝜅(𝐺)  ≤  𝜆(𝐺)  ≤  min𝑣∈𝑉  deg(𝑣).  
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Example: Consider the graphs g and H shown as: 

 

Note that G is strongly connected because there is a path between any two vertices in this directed 
graph. Hence, G is also weakly connected.  

The graph H is not strongly connected. There is no directed path from a to b in this graph. However, 
H is weakly connected, because there is a path between any two vertices in the underlying 
undirected graph of H. 

 

Strong connected components of a directed graph: The sub-graphs of a directed graph G that are 
strongly connected but not contained in larger strongly connected sub-graphs, that is, the maximal 
strongly connected sub-graphs, are called the strongly connected components or strong 
components of G. Note that if a and b are two vertices in a directed graph, their strong components 
are either the same or disjoint. 

The strongly connected components of a digraph are the equivalence classes of vertices under the 
“are mutually reachable” relation. A directed graph is strongly connected if it has only one strongly 
connected component. The graph given below has three strongly connected components {1, 2, 4, 5}, 
{3} and {6}. All pairs of vertices in {1, 2, 4, 5} are mutually reachable. The vertices {3, 6} do not form a 
strongly connected component since vertex 6 cannot be reached from vertex 3. 

 

 

 The graph H in Figure below has three strongly connected components, consisting of the vertex a; 
the vertex e; and the sub-graph consisting of the vertices b, c, and d and edges (b, c), (c, d), and (d, 
b). 
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Some results in connected graphs: 

i. Every connected graph with n vertices has at least (n-1) edges. That is, the minimum number 
of edges in a connected graph equals (n-1). 

ii. A simple graph with n vertices and k connected components has at most 
(𝑛−𝑘)(𝑛−𝑘+1)

2  𝑒𝑑𝑔𝑒𝑠. 
iii. A simple graph with n vertices is connected if it has more than 

(𝑛−1)(𝑛−2)
2  𝑒𝑑𝑔𝑒𝑠. 

iv.  

COUNTING PATHS BETWEEN VERTICES 

The number of paths between two vertices in a graph can be determined using its adjacency matrix. 

Let G be a graph with adjacency matrix A with respect to the ordering v1, v2, . . . , vn of the vertices of 
the graph (with directed or undirected edges, with multiple edges and loops allowed). The number 
of different paths of length r from vi to vj , where r is a positive integer, equals the (i, j )th entry of Ar. 

Example 1: How many paths of length four are there from a to d in the given simple graph G.

 

Solution: The adjacency matrix of G (ordering the vertices as a, b, c, d) is 

A= 

0  1  1  0
1  0  0  1
1  0  0  1
0  1  1  0

. Therefore A2 =A.A= 

2  0  0  2
0  2  2  0
0  2  2  0
2  0  0  2

  => A4= A2. A2=

8  0  0  8
0  8  8  0
0  8  8   0
8  0  0  8

 

The number of paths of length four from a to d is the (1, 4)th entry of A4. Therefore number of paths 
equals 8.  
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Example 2: Find the number of paths of length two between two different vertices in K4. 

Solution: The graph K4 and adjacency matrix of K4 is shown as: 

   

 A= 

0  1  1  0
1  0  0  1
1  0  0  1
0  1  1  0

 . Here A4 = 

3  2  2  2
2  3  2  2
2  2  3  2
2  2  2  3

  

Therefore, the number of paths between any two different vertices is 2. 

 

 

EULERIAN AND HAMILTONAIN PATHS AND GRAPHS 

Euler path: An Euler path in a graph G is a path that traverses each edge of G exactly once, although 
it may visit a vertex more than once. 

Euler circuit/tour: An Euler circuit in a graph G is a cycle that traverses each edge of G exactly once, 
although it may visit a vertex more than once.  

Eulerain Graph: A graph G containing an Euler circuit is called Eulerian. Note that, 

i. Kn is Eulerian when n is odd i.e. for 𝑛 = 2𝑘 + 1. When n is even, Kn cannot be Eulerian. 
ii. Cn is Eulerian 𝑓𝑜𝑟 𝑛 ≥ 3. 

iii. Wn is Eulerian for no value of n. 
iv. Qn is Eulerain for even value of n i.e. 𝑓𝑜𝑟 𝑛 = 2𝑘. 
v. Km,n is Eulerian if and only if both m and n are even. 

 

Examples: In the graphs given below, the graph G1 has an Euler circuit, < a, e, c, d, e, b, a>. Neither of 
the graphs G2 or G3 has an Euler circuit. However, G3 has an Euler path, namely, <a, c, d, e, b, d, a, 
b>. G2 does not have an Euler path.  
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Necessary and sufficient conditions for euler circuits and paths in undirected graphs: 

1. A connected multi-graph with at least two vertices has an Euler circuit if and only if each of 
its vertices has even degree. 

2. A connected multi-graph has an Euler path but not an Euler circuit if and only if it has exactly 
two vertices of odd degree. 

Necessary and sufficient conditions for euler circuits and paths in directed graphs: 

1. A directed multi-graph having no isolated vertices has an Euler circuit if and only if the graph 
is weakly connected and the in-degree and out-degree of each vertex are equal. 

2. A directed multi-graph having no isolated vertices has an Euler path but not an Euler circuit 
if and only if the graph is weakly connected and the in-degree and out-degree of each vertex 
are equal for all but two vertices, one that has in-degree one larger than its out-degree and 
the other that has out-degree one larger than its in-degree. 

 

Algorithms for constructing euler circuits: 

1. 
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Example: construct an Eulerian circuit in the following graph. 

 

We will form a simple circuit that begins at an arbitrary vertex a of G, building it edge by edge. 

 Let x0 = a. First, we arbitrarily choose an edge {x0, x1} incident with a which is possible because G is 
connected. We continue by building a simple path {x0, x1}, {x1, x2}, . . . , {xn−1, xn}, successively adding 
edges one by one to the path until we cannot add another edge to the path. This happens when we 
reach a vertex for which we have already included all edges incident with that vertex in the path. For 
instance, in the graph G given above we begin at a and choose in succession the edges {a, f }, {f, c}, 
{c, b}, and {b, a}. 

The path we have constructed must terminate because the graph has a finite number of edges, so 
we are guaranteed to eventually reach a vertex for which no edges are available to add to the path. 
The path begins at a with an edge of the form {a, x}, and we now show that it must terminate at a 
with an edge of the form {y, a}. To see that the path must terminate at a, note that each time the 
path goes through a vertex with even degree, it uses only one edge to enter this vertex, so because 
the degree must be at least two, at least one edge remains for the path to leave the vertex. 
Furthermore, every time we enter and leave a vertex of even degree, there is an even number of 
edges incident with this vertex that we have not yet used in our path. Consequently, as we form the 
path, every time we enter a vertex other than a, we can leave it. This means that the path can end 
only at a. Next, note that the path we have constructed may use all the edges of the graph, or it may 
not if we have returned to a for the last time before using all the edges. 

An Euler circuit has been constructed if all the edges have been used. Otherwise, consider the sub-
graph H obtained from G by deleting the edges already used and vertices that are not incident with 
any remaining edges. When we delete the circuit <a, f, c, b, a> from the given graph, we obtain the 
sub-graph labeled as H. 

Because G is connected, H has at least one vertex in common with the circuit that has been deleted. 
Let w be such a vertex. (In our example, c is the vertex.) 

Every vertex in H has even degree (because in G all vertices had even degree, and for each vertex, 
pairs of edges incident with this vertex have been deleted to form H). Note that H may not be 
connected. Beginning at w, construct a simple path in H by choosing edges as long as possible, as 
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was done in G. This path must terminate at w. For instance, in given graph,<c, d, e, c> is a path in H. 
Next, form a circuit in G by splicing the circuit in H with the original circuit in G (this can be done 
because w is one of the vertices in this circuit). When this is done, we obtain the circuit <a, f, c, d, e, 
c, b, a>. 

Continue this process until all edges have been used. (The process must terminate because there are 
only a finite number of edges in the graph.) This produces an Euler circuit. The construction shows 
that if the vertices of a connected multi-graph all have even degree, then the graph has an Euler 
circuit. 

2. Fleury’s Algorithm: 

 Fleury’s algorithm, published in 1883, constructs Euler circuits by first choosing an arbitrary vertex 
of a connected multi-graph, and then forming a circuit by choosing edges successively. Once an edge 
is chosen, it is removed. Edges are chosen successively so that each edge begins where the last edge 
ends, and so that this edge is not a cut edge unless there is no alternative. 

Let G=(V, E) be an Eulerian (each vertex has even degree) connected graph. Then use the following 
steps to construct an Eulerian circuit. 

1. Select any vertex u from V as the starting vertex of Euler circuit  𝜋. Initialize 𝜋 to u. 
2. Select an edge 𝑒 = (𝑢, 𝑣). If there are many such edges, select one that is not a bridge. 

Extend the path 𝜋 to 𝜋𝑣 and set 𝐸 =  𝐸 − {𝑒}. If e is a bridge (select only if there is no 
alternative), then set 𝑉 = 𝑉 − {𝑢}. Now from vertex v proceed further. 

3. Repeat step 2 until E=𝜑. 𝑖. 𝑒.𝑢𝑛𝑡𝑖𝑙 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑒𝑑𝑔𝑒 𝑙𝑒𝑓𝑡. 

Note: the same algorithm can be used to find an Euler path with a modification in step 1. We know 
that when a graph has Euler path but not Euler circuit, it contains exactly two vertices of odd degree. 
Take one of the odd degree vertex as starting vertex and continue.  

Example: use Fleury’s algorithm to find Euler circuit in the graph given below: 
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Solution: since each edge has even degree, therefore Euler circuit exists. The steps of algorithm are 
shown as: 

Current path Next Edge Remark 
𝜋 = 𝑎  (𝑎, 𝑗)  No edge from 𝑎 is a bridge. 

Choose(𝑎, 𝑗). Add 𝑗 𝑡𝑜 𝜋 and remove 
(𝑎, 𝑗)𝑓𝑟𝑜𝑚 𝐸. 

𝜋 = 𝑎𝑗  (𝑗,𝑓)  No edge from 𝑗 is a bridge. 
Choose(𝑗,𝑓). Add 𝑓 𝑡𝑜 𝜋 and remove 
(𝑗,𝑓)𝑓𝑟𝑜𝑚 𝐸. 

𝜋 = 𝑎𝑗𝑓  ( 𝑓,𝑔)  (𝑓,𝑔) 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑏𝑟𝑖𝑑𝑔𝑒.  
𝑜𝑡ℎ𝑒𝑟 𝑜𝑝𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑓,ℎ).  

𝜋 = 𝑎𝑗𝑓𝑔  (𝑔,ℎ)  (𝑔,ℎ) is the only edge. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ  (ℎ, 𝑖)  Other option is (ℎ, 𝑖) 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖  (𝑖, 𝑗)  (𝑖, 𝑗) is the only edge. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗  (𝑗,ℎ)  (𝑗,ℎ) is the only edge. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ  (ℎ, 𝑓)  (ℎ, 𝑓) is the only edge. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓  (𝑓, 𝑒)  (𝑓, 𝑒) is the only edge. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒  (𝑒,𝑑)  Other options are (𝑒, 𝑐)(𝑒,𝑎) 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒𝑑  (𝑑, 𝑐)  (𝑑, 𝑐)is the only option. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒𝑑𝑐  (𝑐, 𝑏)  Other options are (𝑐, 𝑒)(𝑐,𝑎) 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒𝑑𝑐𝑏  (𝑏, 𝑎)  (𝑏, 𝑎) is the only option. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒𝑑𝑐𝑏𝑎  (𝑎, 𝑐)  Other options are (𝑎, 𝑒) 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒𝑑𝑐𝑏𝑎𝑐  (𝑐, 𝑒)  (𝑐, 𝑒) is the only option. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒𝑑𝑐𝑏𝑎𝑐𝑒  (𝑒,𝑎)  (𝑒,𝑎) is the only option. 
𝜋 = 𝑎𝑗𝑓𝑔ℎ𝑖𝑗ℎ𝑓𝑒𝑑𝑐𝑏𝑎𝑐𝑒𝑎  E=𝜑. No edge left now. 

 
Euler circuit completed. 

 

HAMILTONIAN PATHS AND GRAPHS 

Hamiltonian path: is a simple path in a graph G that passes through every vertex exactly once. 

Hamiltonian cycle/circuit: is a simple cycle in a graph G that passes through every vertex exactly 
once. 

Hamiltonian graph: A graph that contains a Hamiltonian cycle is said to be Hamiltonian graph, 
otherwise nonhamiltonian. Note that, 

i. Kn is Hamiltonian for 𝑛 ≥ 3. 
ii. Cn is Hamiltonian for 𝑛 ≥ 3. 

iii. Wn is Hamiltonian for n ≥ 3. 
iv. Qn is Hamiltonian for 𝑛 ≥ 2. 
v. Km,n is Hamiltonian for m= 𝑛 ≥ 2. 

Examples: In the graphs given below, G1 has a Hamilton circuit: <a, b, c, d, e, a>. There is no 
Hamilton circuit in G2, but G2 does have a Hamilton path, namely, <a, b, c, d>. G3 has neither a 
Hamilton circuit nor a Hamilton path., because any path containing all vertices must contain one of 
the edges {a, b}, {e, f }, and {c, d} more than once. 
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Conditions for the existence of hamilton circuits: 

There are no known simple necessary and sufficient criteria for the existence of Hamilton circuits. 
However, many theorems give sufficient conditions for the existence of Hamilton circuits. Two 
among them are: 

1. DIRAC’S THEOREM:  If G is a simple graph with 𝑛 vertices with 𝑛 ≥  3 such that the degree 
of every vertex in G is at least  𝑛

2
, then G has a Hamilton circuit. 

2. ORE’S THEOREM:  If G is a simple graph with 𝑛 vertices with 𝑛 ≥  3 such that 𝑑𝑒𝑔(𝑢) +
 𝑑𝑒𝑔(𝑣) ≥ 𝑛 for every pair of nonadjacent vertices u and v in G, then G has a Hamilton 
circuit. 

Note that, Ore’s theorem and Dirac’s theorem provide only sufficient conditions for a connected 
simple graph to have a Hamilton circuit. However, these theorems do not provide necessary 
conditions for the existence of a Hamilton circuit. That is, a graph may have Hamilton circuit even if 
none of these theorems hold good. 

Also, certain properties can be used to show that a graph has no Hamilton circuit. For example, a 
graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each 
vertex is incident with two edges in the circuit. Moreover, if a vertex in the graph has degree two, 
then both edges that are incident with this vertex must be part of any Hamilton circuit. Also, note 
that when a Hamilton circuit is being constructed and this circuit has passed through a vertex, then 
all remaining edges incident with this vertex, other than the two used in the circuit, can be removed 
from consideration. Furthermore, a Hamilton circuit cannot contain a smaller circuit within it. 

Applications of hamilton circuits: 

The best algorithms known for finding a Hamilton circuit in a graph or determining that no such 
circuit exists have exponential worst-case time complexity(Hamiltonian cycle problem is NP 
complete). 

i. The famous traveling salesperson problem (TSP) reduces to finding a Hamilton circuit in a 
complete graph. 

ii. Gray codes require finding  a Hamilton circuit in Qn. 
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PLANAR GRAPHS 

A graph is called planar if it can be drawn in the plane without any edges crossing (where a crossing 
of edges is the intersection of the lines or arcs representing them at a point other than their 
common endpoint). Such a drawing is called a planar representation of the graph. 

A graph may be planar even if it is usually drawn with crossings, because it may be possible to draw 
it in a different way without crossings. 

Note that, a planar representation of a graph splits the plane into regions, including an unbounded 
region (e.g. planar rep. of K4 splits the plane in  4 regions R1, R2, R3 and R4 as shown).Further, all 
planar representations of a graph split the plane into the same number of regions. 

Examples: K4 and Q3 are planar because these can be drawn without crossings, as shown: 

 

Similarly, K5 and K3,3 are non-planar because these cannot be drawn in plane without edge 
crossings. 

EULER’S FORMULLA: Let G be a connected planar simple graph with 𝑒 edges and 𝑣 vertices. Let 𝑟 be 
the number of regions in a planar representation of G. Then   𝒓 =  𝒆 −  𝒗 +  𝟐. 

Given below are some corollaries of Euler’s formula that must be satisfied by planar graphs. If a 
graph fails to satisfy any of these, then it is non-planar. These results can only be used to show that a 
graph is not planar (when any of the corollaries does not hold on that graph), they cannot be used to 
show that a graph is planar. 

COROLLARY 1 of Euler’s formula: If G is a connected planar simple graph with e edges and v vertices, 
where v ≥ 3, then  e ≤ 3v - 6. 

Using corollary 1, we can show that K5 is not planar. 
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COROLLARY 2 of Euler’s formula: If G is a connected planar simple graph, then G has a vertex of 
degree not exceeding five. 

COROLLARY 3 of Euler’s formula: If a connected planar simple graph has e edges and v vertices with 
v ≥ 3 and no circuits of length three, the𝑛 𝑒 ≤  2𝑣 −  4. 

Using corollary 3, we can show that K3,3  is not planar. 

We know that K3,3 is not planar. Note, however, that this graph has six vertices and nine edges. This 
means that the inequality 𝑒 =  9 ≤  12 =  3 ・ 6 −  6 is satisfied. Consequently, the fact that the 
inequality 𝑒 ≤  3𝑣 −  6 is satisfied does not imply that a graph is planar. Using corollary 3, we can 
show that K3,3  is not planar. 

GRAPH HOMEOMORPHISM AND KURATOWSKI’S THEOREM 

Homeomorphic graphs: If a graph is planar, so will be any graph obtained by removing an edge {u, v} 
and adding a new vertex w together with edges {u, w} and {w, v}. Such an operation is called an 
elementary subdivision. The graphs G1  = (V1,E1) and G2= (V2,E2) are called homeomorphic if they 
can be obtained from the same graph by a sequence of elementary subdivisions. 

Consider the graphs G1, G2 and G3 given below. 

These three graphs are homeomorphic because all three can be obtained from G1 by elementary 
subdivisions.  

G1 can be obtained from itself by an empty sequence of elementary subdivisions. To obtain G2 from 
G1 we can use this sequence of elementary subdivisions:  

i. remove the edge {a, c}, add the vertex f , and add the edges {a, f } and {f, c}; 
ii. remove the edge {b, c}, add the vertex g, and add the edges {b, g} and {g, c}; and 

iii. remove the edge {b, g}, add the vertex h, and add the edges {g, h} and {b, h}. 

Similarly, G3 can be obtained from G1. 

 

 

KURATOWSKI’S THEOREM: 

A graph is non-planar if and only if it contains a sub-graph homeomorphic to K3,3 or K5. 

Thus, all non-planar graphs must contain a sub-graph that can be obtained from K3,3 or K5 using 
certain permitted operations. 
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Example: consider the graph given below. We will show that this graph is not planar because its 
subgraph H is homeomorphic to K5. H is obtained by deleting h, j , and k and all edges incident with 
these vertices. H is homeomorphic to K5 because it can be obtained from K5 (with vertices a, b, c, g, 
and i) by a sequence of elementary subdivisions, adding the vertices d, e, and f. 

 

GRAPH COLORING 

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two 
adjacent vertices are assigned the same color. 

A graph can be colored by assigning a different color to each of its vertices. However, for most 
graphs a coloring can be found that uses fewer colors than the number of vertices in the graph. So 
the problem is to find the least number of colors required. 

The chromatic number of a graph is the least number of colors needed for a coloring of this graph. 
The chromatic number of a graph G is denoted by 𝜒(𝐺). (Here χ is the Greek letter chi.) 

Because every two vertices of a complete graph are adjacent, the chromatic number of Kn is 𝑛. That 
is, (Kn) = n. 

The chromatic number of a bipartite graph is two (because all vertices in one set can be assigned 
same color and all vertices in other set can also be assigned same color different from first). Thus, a 
bipartite graph is 2-colorable and if a graph is 2-colorable, then it is bipartite. 

Because Km,n is a bipartite graph, its chromatic number is also equal to two i.e.  χ(Km,n) = 2. This 
means that we can color the set of m vertices with one color and the set of n vertices with a second 
color. For example, 
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Also note that, χ(Cn) =
2, if n is an even positive integer with n ≥  4 
3,    if n is an odd positive integer with n ≥  3.

�  

                           χ(Wn) = 3,       if n is  even 
4,          if n is odd

� 

A graph G whose edge set E is empty has chromatic number equal to one. 

THE FOUR COLORTHEOREM: The chromatic number of a planar graph is no greater than four. 

Two things are required to show that the chromatic number of a graph is k.  

First, we must show that the graph can be colored with k colors. This can be done by constructing 
such a coloring. Second, we must show that the graph cannot be colored using fewer than k colors. 

Examples: consider the following graphs:  

The coloring of G using 3 colors and coloring of H using 4 colors is shown alongside the graphs G and 
H below. Note that, no two adjacent vertices are assigned the same color. 

The minimum number of colors used for coloring of G is 3 i.e.𝜒(𝐺) = 3  because the vertices a, b, c 
must be assigned different colors. And minimum number of colors used for coloring of H is 4 i.e. 
χ(H)=4. 

 

      

__________________________________________________________________________________ 
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BINARY OPERATION 

Let A and B be two non-empty sets, then a function from 𝐴 × 𝐴 to B is called a binary operation (or 
composition) on A. 

If a binary operation on A is denoted by ‘*’, then the unique element of B associated with the 
ordered pair (a, b) of 𝐴 × 𝐴 is denoted by a*b. 

Thus, a binary operation ‘*’ on A is a rule which associates every ordered pair (a, b) of 𝐴 × 𝐴, a 
unique element a*b of B. 

i.e. *: 𝐴 × 𝐴 → 𝐵 such that *(a, b) = a*b     ∀ (a, b) ∈ 𝐴 × 𝐴 

Note: if B ⊆ 𝐴, the A is said to be closed under the binary operation. 

 

Let A be a nonempty set and ‘*’ be a binary operation on A, then 

i. A is called closed under the operation ‘*’ if and only if a*b ∈ A  ∀ a, b ∈ 𝐴. (Closure 
property) 

ii. The operation is called commutative if and only if a*b = b*a,  ∀ a, b ∈ 𝐴. 
iii. The operation is called associative if and only if (a*b)*c = a*(b*c), ∀ a, b, c ∈ 𝐴. 
iv. The operation is called  

a. left cancellative if and only if a*b=a*c ⇒ b = c, ∀ a, b, c ∈ 𝐴. 
b. Right cancellative if b*a=c*a ⇒ b = c, ∀ a, b, c ∈ 𝐴. 
c. Cancellative if and only if it is left and right cancellative. 

v. An element e is called identity element if and only if a*e = a = e*a ∀a ∈ 𝐴. 
vi. An element 𝑎 ∈ 𝐴 is called inverse element if and only if ∃ b ∈ 𝐴 such that a*b = e = b*a. 

Here b is called inverse of A. 

Example: Addition and multiplication are binary operations on the set N of natural numbers. 
Further, set N is closed with respect to addition and multiplication because the addition or 
multiplication of two natural numbers is a natural number. However, the set N is not closed under 
subtraction, for example  5-7=-2, which is an integer and ∉ N. 

For set N of natural numbers there is no identity element for addition operation but 1 is identity 
element for multiplication operation. 
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A binary operation on a finite set can be represented by a table called composite table. For example, 

the composite table for a binary operation multiplication on a set S = {1, 2, 3} is shown as: 

× 1 2 3 
1 1 2 3 
2 2 4 6 
3 3 6 9 

Reading the composite table, you can conclude the various properties/laws: 

Closure property: If all entries in the table are elements of given set S, then S is closed under ‘*’. 
Note that the above set is not closed under multiplication, e.g. 9 ∉ 𝑆. 

Commutative law: if transpose of the matrix representing the elements is same as the original table, 

then ‘*’ is commutative. Note that the binary operation, multiplication on {1, 2, 3} holds 

commutative property. 

Identity element: If the row headed by element ‘a’ of S coincides with the top row, then ‘a’ is 
identity element. In the above example, 1 is the identity element under multiplication. 

Inverse element: if the table contains identity element ‘e’ at the intersection of row ‘a’ and column 

‘b’, then b is inverse of a and we write a-1 = b. In the above example, table contains identity element 

1 at only one place, that is, at intersection of row headed by 1 and column headed by element 1. 

Thus, 1 is inverse of 1. 

 

ALGEBRAIC STRUCTURE 

A nonempty set together with one or more binary operations is called algebraic structure. For 

example, (N, +), (Z, +), R(+, .) are algebraic structures. The identity element of any algebraic 

structure, if it exists, is unique. Similarly, the inverse of an element is unique, if it exists and inverse 

of identity element is the identity element itself. 

Group 

A nonempty set G, together with a binary operation ‘*’ is called group, denoted by (G, *), if the 
following conditions are satisfied: 

i. Closure law, i.e.  a*b ∈ G  ∀ a, b ∈ 𝐺 

ii. Associative law, i.e.  (a*b)*c = a*(b*c), ∀ a, b, c ∈ 𝐺. 

iii. Existence of identity element e, i.e.  a*e = a = e*a ∀ a ∈ 𝐺  

iv. Existence of inverse element a-1, i.e. for every a ∈ 𝐺, ∃ a-1 ∈ 𝐺, 𝑠𝑢𝑐ℎ that a* a-1 = e = a-1 *a. 

(here, a-1≠ 1
𝑎  ) 

Abelian Group (or Commutative Group) is named after the great Norwegian mathematician N. Able. 

A group (G, *) is called Abelian group if it satisfies the commutative law, i.e. a*b = b*a,  ∀ a, b ∈ 𝐺. 
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Groupoid: A nonempty set S, together with a binary operation ‘*’ is called groupoid if S is closed 
under ‘ *’  i.e. a*b ∈ S  ∀ a, b ∈ 𝑆. For example, the algebraic structure (N, +) is a groupoid because 

the set N is closed under addition. But the set of odd integers  under ‘+’ is not a groupoid because it 
is not closed under addition, e.g. 5+5=10, which is even. 

Semi-Group: A nonempty set S, together with a binary operation ‘*’ is called semi-group, if the 

following conditions are satisfied: 

i. Closure law, i.e.  a*b ∈ S  ∀ a, b ∈ 𝑆 

ii. Associative law, i.e.  (a*b)*c = a*(b*c), ∀ a, b, c ∈ 𝑆. 

Note: every group is a semi-group but the converse may not be true. For example, (N, +) is semi-

group but not a group because neither identity element nor inverse element exists for this algebra. 

Similarly, (Z, +) and (Z, .) are semigroups. 

The set Q of rational numbers is not a group under multiplication. Although the identity element for 

all rational numbers under multiplication is 1, but the inverse (or reciprocal) of zero is not defined. 

Monoid:A nonempty set S, together with a binary operation ‘*’ is called monoid if the following 

conditions are satisfied: 

i. Closure law, i.e.  a*b ∈ S  ∀ a, b ∈ 𝑆 

ii. Associative law, i.e.  (a*b)*c = a*(b*c), ∀ a, b, c ∈ 𝑆. 
iii. Existence of identity, i.e. for some e ∈ 𝑆,  a*e = a = e*a ∀ a ∈ 𝑆 

Thus, a monoid is semigroup that has an identity element. For example, (Z, +) is a monoid with 

identity element 0 and (Z, .) is a monoid with 1 as identity element. 

Cyclic Group 

A group (G, *) is said to be cyclic if there exists an element ‘a’ in G such that G={an : n ∈ Z}. The 

element ‘a’ is said  to be the generator of the cyclic group. The cyclic group generated by a is 

denoted by the symbol [a] or (a). Also note that every cyclic group is Abelian. 

PROPERTIES OF A GROUP 

1. The identity element in a group is unique. 

2. The inverse of each element of a group is unique. 

3. If the inverse of a is a-1, then the inverse of a-1 is a i.e.  (a-1)-1 = a. 

4. (ab)-1 = b-1a-1 ∀ a, b ∈ 𝐺. 

5. Cancellation laws hold good in a group i.e. 

a. if a*b=a*c ⇒ b = c, ∀ a, b, c ∈ 𝐴.(left cancellation law) 

b. if b*a=c*a ⇒ b = c, ∀ a, b, c ∈ 𝐴. (Right cancellation law) 

6. if a and b are any two elements of a group G, then the equations a*x=b and y*a=b have 

unique solutions in G. The solutions are x=a-1 *b and y= b* a-1. 
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Order of an element of a group: Let (G, *) be a group and let ‘g’ be an element of G. The order of an 
element ‘g’ in G, denoted by 𝑂(𝑔), is the smallest positive integer 𝑛 such that  𝑔𝑛  =  𝑒. If no such 
integer exists, then ‘g’ has infinite order. 

Thus, to find order of a group element ‘g’, compute the sequence of products 𝑔,  𝑔2,  𝑔3,𝑔4,...until 
an identity element is obtained first time. The exponent of ‘g’ at this time gives the order of ‘g’. 

Example: Let G= {1, -1, i, -i } be a multiplicative group. Find the order of every element? 
(multiplicative group means binary operation is multiplication) 

Solution: Clearly, 1 is identity element in this group. 

i. 11 = 1 ⇒ 𝑂(1) = 1  
ii. −12 = 1 ⇒ 𝑂(−1) = 2   

iii. 𝑖4 = 𝑖2 × 𝑖2 = −1 × −1 = 1 ⇒ 𝑂(𝑖) = 4  
iv. −𝑖4 = −𝑖2 × −𝑖2 = 1 × 1 = 1 ⇒ 𝑂(−𝑖) = 4  

Properties of order:  

i. 𝑂(𝑎) = 𝑂(𝑎−1)  
ii. if 𝑂(𝑎) = 𝑛, and 𝑒𝑚 = 𝑒, then n is divisor of m. 

iii. If 𝑂(𝑎) = 𝑛, then a, a2, ... , an(=e) are distinct elements of G. 
iv. If 𝑂(𝑎) = 𝑛 and p is prime to n, then 𝑂(𝑎𝑝) = 𝑛. 
v. If 𝑂(𝑎) is infinite and p be a positive integer, then 𝑂(𝑎𝑝) 𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒. 

Order of a group: The number of elements in a group is called order of a group, denoted by O(G). A 
group which contains finite number of elements is called finite group, otherwise infinite group. 

Subgroup 

Let (G, *) be a group and H be a nonempty subset of G. Then, (H, *) is said to be subgroup of G if    
(H, *) is also a group by itself. 

Because every set is a subset of itself, every group is a subgroup of itself. Further, the subset of G 
containing only e (identity element) is also a subgroup of G. These two subgroups (G, *) and ({e}, *) 
of the group (G, *) are called trivial/ improper subgroups, others are called proper or non-trivial 
subgroups. 

Example: The group ({1,-1}, .) i.e. multiplicative group on {1,-1} is a subgroup of multiplicative group 
({1, -1, i, -i}, .) 

Similarly, the additive group of even integers is a subgroup of the additive group of all integers. 

Properties of Subgroups: 

i. The identity element of a subgroup is same as that of the group. 
ii. For any a ∈ H, if a-1 is the inverse of a in G, then a-1 is also the inverse of a in H. 

iii. A nonempty subset H of a group (G, *) is a subgroup of G if and only if  
a. for all a, b ∈ 𝐻, a*b ∈ 𝐻. 
b. for all a ∈ 𝐻, a-1 ∈ H. 

Integral powers of an element: 

 a0 = e, a1 =a, ..., an= a*a*...*a.(n factors) 

a-n = (a-1)n = a-1 *a-1 *...*a-1(n factors)] 
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iv. Let (G, *) be group, then a nonempty subset H of G forms a subgroup of (G, *) if and only if 

a ∈ 𝐻 and b ∈ 𝐻 imply a*b
-1

 ∈ H. (this is a necessary and sufficient condition for subset H to 

be a subgroup of G) 

v. Let (G, *) be group and H be a nonempty subset of G. If H is closed under ‘*’, then H forms a 
subgroup of (G, *). 

vi. Let H and K be subgroups of (G, *). Then H ∩ 𝐾 is a subgroup of (G, *) but H ∪ 𝐾 is not 

necessarily a subgroup. 

vii. Let G be a group and a be an element of G. Then, the set {a
n 

: n ∈ Z} forms a subgroup of G 

and it is the smallest subgroup of G containing the element a. 

viii. Every subgroup of a cyclic group is cyclic. 

 

Cosets 

Let H be a subgroup of a group (G, *) and let a ∈ G. Then the set {a*h : h∈ 𝐻} is called the left coset 

generated by a and H and is denoted by aH. 

Thus, aH = {a*h : h∈ 𝐻}.  

Similarly, Ha={h*a : h∈ 𝐻} is called the right coset. 

Both aH and Ha are subsets of G. Also, if e be the identity element of G, then e ∈ 𝐻 and  He=H=eH. 

Therefore, H is itself a left as well as right coset. 

Any left coset of an abelian group is equal to the corresponding right coset. 

In additive notation, a left coset is denoted by a+H = { a+h: h h∈ 𝐻 }  and right coset by H+a = { h+a: h 

h∈ 𝐻 } 

Example: Let G be an additive group of integers i.e  G = ({..., -3, -2, -1, 0, 1, 2, 3, ...}, +)  

And let H be a subgroup of G obtained by multiplying each element of G by 3,  

then H=({..., -9, -6, -3, 0, 3, 6, 9, ...}, +) 

The right and left cosets of H in G are: 

For 0∈ 𝐺, H+0 = {..., -9, -6, -3, 0, 3, 6, 9, ...}, and 0+H = H+0 = {..., -9, -6, -3, 0, 3, 6, 9, ...} 

For 1∈ 𝐺, H+1= {..., -8, -5, -2, 1, 4, 7, 10, ...} and 1+H =  {..., -8, -5, -2, 1, 4, 7, 10, ...} 

For 2 ∈ 𝐺, H+2 = {..., -7, -4, -1, 2, 5, 8, 11,...} and 2+H ={..., -7, -4, -1, 2, 5, 8, 11,...} 

Note that, the left or right cosets are all distinct and disjoint sets. 

Since the group G is Abelian (easy to check), that is why  any left coset is equal to the corresponding 

right coset. 
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Properties of cosets 

Let H be a subgroup of G and let a, b ∈ 𝐺. Then, 

i. a∈ 𝑎𝐻. 
ii. aH = bH or aH ∩ 𝑏𝐻=𝜑(empty set). 

iii. aH = bH if and only if a-1 b ∈H. 

Normal Subgroup 

A subgroup H of a group G is said to be a normal subgroup of G if Ha=aH, for all a ∈ G. Clearly, every 
subgroup of an Abelian group is normal subgroup. 

HOMOMORPHISM AND ISOMORPHISM OF GROUPS 

Let (G, ∘) and (G’, *) be two groups. A mapping (function) 𝜙: (G, ∘) → (G’, *) is said to be 
homomorphism if 𝜙(𝑎 ∘ 𝑏) = 𝜙(𝑎) ∗ 𝜙(𝑏) for all a,b ∈ G. 

A ono-to-one homomorphism is said to be monomorphism.  

An onto homomorphism is said to be epimorphism . 

A homomorphism is said to be isomorphism if and only if it is both one-to-one and onto i.e. both 
monomorphism and epimorphism. Thus, if (G, ∘) and (G’, *) are two groups, then a mapping 𝜙: (G, ∘) 
→ (G’, *) is called isomorphism if  

i. 𝜙 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚.  
ii. 𝜙 𝑖𝑠 𝑜𝑛𝑒 − 𝑡𝑜 − 𝑜𝑛𝑒  

iii. 𝜙 𝑖𝑠 𝑜𝑛𝑡𝑜.  

Two groups (G, ∘) and (G’, *) are said to be isomorphic if there exists an isomorphism 𝜙: (G, ∘) → (G’, 
*) and symbolically we write G ≅ 𝐺′. 

If the group G is finite, then G can be isomorphic to G’ if and only if G’ is finite and O(G’) = O(G). 
Further, If G ≅ 𝐺′, then G and G’ are abstractly identical and there is no difference between them. 

Properties of isomorphism:  

Suppose that 𝑓 is an isomorphic mapping from G into G’. Then, 

 if e is the identity of G, then 𝑓(𝑒) is the identity of G’. 

if e is the identity of G and e’ is the identity of G’, then 𝑓(𝑒) = 𝑒′ . 

𝑓(𝑎−1) = [𝑓(𝑎)]−1,𝑎 ∈ 𝐺.  

The order of an element a of G is equal to the order of its image 𝑓(𝑎). 

Finally, if we want to prove that group G is isomorphic to G’, then we must find a mapping f: G->G’ 
which is one-one and onto and also preserves compositions. 
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FREE TREES 

A free tree is a connected, acyclic, undirected graph (The adjective free is often omitted when we 
say that a graph is a tree). 

If an undirected graph is acyclic but possibly disconnected, it is called a forest. Each connected 
component of a forest is a tree. Thus, every tree is a forest (containing only one tree) but every 
forest is not a tree. 

 

PROPERTIES OF FREE TREES 

Let 𝐺 = (𝑉,𝐸) be an undirected graph on 𝑛 vertices (or nodes) and 𝑒 edges, then the following 
statements are equivalent: 

i. G is a free tree. 
ii. Any two vertices in G are connected by a unique simple path (i.e. G is connected and there is 

one and only one path between any vertex pair). 
iii. G is connected but if any edge is removed from E, the resulting graph is disconnected. 
iv. G is connected and 𝑒 = 𝑛 − 1. 
v. G is acyclic and 𝑒 = 𝑛 − 1. 

vi. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle. 

 

 

ROOTED TREES 

A rooted tree is a free tree in which one of the vertices is distinguished from the others. The 
distinguished vertex is called the root of the tree.  

Once we specify a root, we can assign a direction to each edge. Because there is a unique path from 
the root to each vertex of the graph, we direct each edge away from the root. Thus, a tree together 
with its root produces a directed graph called a rooted tree. 

We can change an unrooted tree into a rooted tree by choosing any vertex as the root. Note that 
different choices of the root produce different rooted trees. For example, consider the tree T and 
two rooted trees produced from this tree shown below. The arrows indicating the directions of the 
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edges in a rooted tree can be omitted, because the choice of root determines the directions of the 
edges. 

 

Suppose that T is a rooted tree. If 𝑣 is a vertex in T other than the root, the parent of 𝑣 is the unique 

vertex 𝑢 such that there is a directed edge from  𝑢 𝑡𝑜 𝑣. When 𝑢 is the parent of 𝑣, 𝑣 is called a child 

of 𝑢. Root has no parent. Vertices with the same parent are called siblings. The ancestors of a vertex 

other than the root are the vertices in the path from the root to this vertex, excluding the vertex 

itself and including the root (that is, its parent, its parent’s parent, and so on, until the root is 

reached). The descendants of a vertex 𝑣 are those vertices that have 𝑣 as an ancestor. A vertex of a 

rooted tree is called a leaf if it has no children. Vertices that have children are called internal 
vertices. The root is an internal vertex unless it is the only vertex in the graph, in which case it is a 

leaf. 

If 𝑎 is a vertex in a tree, the subtree with 𝑎 as its root is the subgraph of the tree consisting of 𝑎 and 

its descendants and all edges incident to these descendants. 

Consider the following rooted tree. 

In this tree, the parent of c is b. The children of g are h, i, and j. The siblings of h are i and j. The 

ancestors of e are c, b, and a. The descendants of b are c, d, and e. The internal vertices are a, b, c, g, 

h, and j . The leaves are d, e, f , i, k, l, and m. The subtree rooted at g is shown alongside. 

 

A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is 

called a full m-ary tree if every internal vertex has exactly m children. An m-ary tree with m = 2 is 

called a binary tree. A rooted m-ary tree of height ℎ is balanced if all leaves are at levels ℎ or ℎ −  1. 
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DEGREE, HEIGHT, LEVEL, DEPTH 

Degree: The number of children of a node (or a vertex) in a rooted tree is referred to as degree of a 
node. 

Depth: The length of the simple path from the root to a node is called the depth of a node. The 
depth of root node is zero.  

Level: A level of a tree consists of all nodes at the same depth. (Some authors use level instead of 
depth i.e. the level of a vertex 𝑣 in a rooted tree is the length of the unique path from the root to 
this vertex). 

Height: the height of a node in a tree is the number of edges on the longest simple downward path 
from the node to a leaf and the height of tree is the height of its root. The height of a tree is also 
equal to the largest (maximum) depth of any node in the tree. The height of a leaf node is zero. 

 

 

 

ORDERED TREES 

An ordered tree is a rooted tree in which the children of each internal vertex are ordered. Ordered 
trees are drawn so that the children of each internal vertex are shown in order from left to right. 
That is, if a vertex (or node) has k children, then there is first child, a second child, . . ., a kth child. 

In an ordered binary tree (usually called just a binary tree), if an internal vertex has two children, the 
first child is called the left child and the second child is called the right child. The tree rooted at the 
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left child of a vertex is called the left subtree of this vertex, and the tree rooted at the right child of a 
vertex is called the right subtree of the vertex. 

BINARY TREE 

A binary tree is a rooted tree in which each internal vertex has at most two children. Each child is 
designated as either left child or right child. 

 

Figure X: Binary trees (a) A binary tree drawn in a standard way. The left child of a node is drawn beneath the node and to 
the  left. A right child is drawn beneath and to the right. (b) A Binary tree different from the one in (a). In (a), the left child 
of a node 7 is 5 and the right child is absent. In (b), the left child of node 7  is absent and the right child is 5. As ordered 
trees, these trees are the same, but as binary trees, they are distinct.(c)  The binary tree in (a) represented by the internal 
nodes of a full binary tree: an ordered tree in which each internal node has degree 2.The leaves in the tree are shown as 
squares. 

 

A full binary is a tree in which each internal node has exactly two children. That is, each node has 
either zero children or two children. 

A complete binary tree is a binary tree in which all leaves have the same depth and degree of all 
internal nodes is two (degree= number of children). 

 

Complete k-ary tree is a tree in which all leaves have the same depth and all internal nodes have 
degree k. To count the number of leaf nodes in a k-ary tree of height h, note that the root has k 
children at depth 1, each of the nodes at depth 1 has k children at depth 2 and so on. Thus, the 
number of leaves at depth ℎ is  𝑘ℎ . Consequently, the height of a complete k-ary tree with 𝑛 leaves 
is log𝑘 𝑛.The number of internal nodes of a complete k-ary tree of height h is  
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1 + 𝑘 + 𝑘2 +  …+ 𝑘ℎ−1 = 𝑘ℎ−1
𝑘−1 . 

Therefore, a complete binary tree (k=2) has 2ℎ − 1 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑛𝑜𝑑𝑒𝑠. Thus, total nodes= 2ℎ + 2ℎ −
1 = 2ℎ+1 − 1. 

Properties of binary trees: 

i. The number of nodes/vertices in a binary tree is always odd. 
ii. The maximum number of vertices at depth ℎ of a binary tree is 2ℎ . 

iii. The maximum number of vertices in a binary tree of height h is 2ℎ+1 − 1. 
iv. The number of internal nodes in a full binary tree is 1 fewer than the number of leaves. 

SOME IMPORTANT RESULTS (consider that a tree is rooted, because we can always designate one of 
the vertices as root). 

i. A tree with 𝑛 vertices contains 𝑛 − 1 edges ( 𝑒 = 𝑛 − 1). 
ii. A forest with 𝑛 vertices and having 𝑡 trees in it, contains a total of (𝑛 − 𝑡) edges. 

Proof: Suppose a tree Ti (𝑖 = 1, 2,… , 𝑡) contains 𝑥𝑖  vertices. Then number of edges 
in each tree Ti =  (𝑥𝑖 − 1). Therefore, total number of edges in this forest 
= ∑ (𝑥𝑖𝑡

𝑖=1 − 1) = ∑ 𝑥𝑖𝑡
𝑖=1 + (−1)(𝑡 𝑡𝑖𝑚𝑒𝑠) = 𝑛 − 𝑡.  

iii. A full 𝑚 − 𝑎𝑟𝑦 tree with 𝑖 internal vertices contains   𝒏 =  𝒎𝒊 +  𝟏    vertices. 
iv. A full 𝑚− 𝑎𝑟𝑦 tree with 

a. 𝑛 vertices has 𝑖 =  (𝑛 −  1)/𝑚  internal vertices and 𝑙 =  [(𝑚 −  1)𝑛 +  1]/𝑚  
leaves, 

b. 𝑖 internal vertices has 𝑛 =  𝑚𝑖 +  1 vertices and 𝑙 =  (𝑚 −  1)𝑖 +  1  leaves, 
c. 𝑙 leaves has  𝑛 =  (𝑚𝑙 −  1)/(𝑚 −  1) vertices and 𝑖 =  (𝑙 −  1)/(𝑚 −  1) 

internal vertices. 
v. There are at most 𝑚ℎ  leaves in an m-ary tree of height  ℎ. 

vi. If an m-ary tree of height ℎ has 𝑙 leaves, then  ℎ ≥  𝑐𝑖𝑒𝑙𝑖𝑛𝑔(log𝑚 𝑙 ) . If the m-ary tree is full 
and balanced, then  ℎ =  𝑐𝑖𝑒𝑙𝑖𝑛𝑔(log𝑚 𝑙 ) (ceiling(x) returns the smallest integer greater 
than or equal to x.) 

BINARY SEARCH TREE 

Binary search tree is a binary tree in which each vertex is labeled with a key. The vertices are 
assigned keys so that the key of a vertex is both larger than the keys of all vertices in its left subtree 
and smaller than the keys of all vertices in its right subtree. 

Constructing a binary search tree for a given list of items: 

1. Make the first item in the list as root node N. 
2. Compare the subsequent item with the root node N 

a. If item < N, move to the left child of N. 
b. If item ≥ N, move to the right child of N. 

3. Repeat step 2 until you find an empty left or right subtree. Insert the item in place of empty 
subtree. 
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Note: Binary search tree provides efficient searching method. With slight modification to above 
steps, you can search an element in a binary search tree. Given an element to be searched, follow 
step 2 repeatedly until either you find a match or search fails. 

Example: construct the binary search tree for following numbers in the this order: 40, 60, 50, 33, 55, 
11. 

Solution: Note that inorder traversal of final tree yields sorted list.  

 

Example 2: Form a binary search tree for the words: mathematics, physics, geography, zoology, 
meteorology, geology, psychology, and chemistry (using alphabetical order). 

Solution:  
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PREFIX CODES/HUFFMAN CODES 

Prefix codes are used in data compression. Data is a sequence of characters. To represent this data, 

we can represent each character by a binary string (codeword). There are two possible ways: 

i. Fixed-length code 

ii. Variable-length code 

To illustrate, consider a 100,000-character data file that we wish to store compactly. Suppose the 

characters in the file occur with the frequencies given in following table: 

character a b c  d E f 
Frequency(in thousands) 45 13 12 16 9 5 

Fixed-length codeword 000 001 010 011 100 101 

Variable-length codeword 0 101 100 111 1101 1100 

 

If we use a fixed-legth code, we need 3 bits to represent 6 characters: a= 000, b= 001, ..., f=101. This 

method requires 300,000 bits to code the entire file. 

A variable length code can do considerably better than a fixed length code, by giving frequent 

characters short codewords and infrequent characters long codewords. The above figure shows one 

such code. Here, a= 0, b= 101 and so on. This code requires 

 (45 × 1 + 13 × 3 + 12 × 3 + 16 × 3 + 9 × 4 + 5 × 4) × 1000 = 224,000 𝑏𝑖𝑡𝑠.  to represent the 

file, a savings of approximately 25%. In fact, this is an optimal character code for this file. This shows 

the significance of variable-length codes such as prefix or Huffman codes. 

Prefix codes are variable length codes in which no codeword occurs as a prefix of some other 

codeword. A prefix code always gives the optimal data compression among any character code. 

A prefix code can be represented using a 

binary tree, where the characters (or 

symbols) are the labels of the leaves in the 

tree. The edges of the tree are labeled so that 

an edge leading to a left child is assigned a 0 

and an edge leading to a right child is assigned 

a 1. The bit string used to encode a character 

is the sequence of labels of the edges in the 

unique path from the root to the leaf that has 

this character as its label. For instance, the 

tree in Figure given alongside represents the 

encoding of e by 0, a by 10, t by 110, n by 

1110, and s by 1111. 

An optimal code for a file is always represented by a full binary tree (in which every internal node 

has two children). 

Prefix codes simplify decoding because no codeword is a prefix of any other. Simply use the 

following steps to decode a bit string back into character string: 



 Trees 8 

 
1. Start from root and traverse along edges as per bits in the bit string (i.e. if 1 bit is 

encountered move right, otherwise left). 

2. Stop when leaf is encountered. The leaf-label gives the character encoded by the bit 

substring. 

3. Start again from the root, continuing with the next bit in the bit string. 

Executing the above steps on bit string 11111011100, we obtain the character string “sane”. 

Algorithm: Constructing a Huffman code/ prefix code. 

Given a set of symbols (or characters) and their frequencies, the objective is to construct a binary 

tree where the symbols are labels of leaf nodes. Follow steps: 

1. Construct a forest of trees each consisting of one vertex, where each vertex has a symbol as 

its label and where the weight of this vertex equals the frequency of the symbol. 

2. Combine two trees having the least total weight into a single tree by introducing a new root 

and placing the tree with larger weight as its left subtree and the tree with smaller weight as 

its right subtree. Furthermore, assign the sum of the weights of the two subtrees of this tree 

as the total weight of the tree.   

3. Repeat step 2 until the forest is reduced to a single tree. The algorithm is finished when it 

has constructed a tree 

Huffman coding is greedy algorithm. Its time complexity on a set of n characters is 𝑂(𝑛 log𝑛). 

Example: Use Huffman coding to encode the following symbols with the frequencies listed: 

A: 0.08, B: 0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35. What is the average number of bits used to encode 

a character?  

Solution: Figure X given below illustrates the steps of algorithm. 

The encoding produced encodes A by 111, B by 110, C by 011, D by 010, E by 10, and F by 00. The 

average number of bits used to encode a symbol using this encoding is  

3 ·  0.08 +  3 ·  0.10 +  3 ·  0.12 +  3 ·  0.15 +  2 ·  0.20 +  2 ·  0.35 =  2.45.  
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 (Constructing Huffman codes, example) 
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TREE TRAVERSAL 

Ordered rooted trees are often used to store information. Therefore, we need procedures for 
systematically visiting each vertex of an ordered rooted tree to access data. These procedures are 
called traversal algorithms. Three common recursive algorithms for visiting all the vertices of a tree 
are:  

1. Preorder traversal 
2. Inorder traversal 
3. Postorder traversal

1. Preorder traversal: Let T be an ordered 
rooted tree with root 𝑟. If T consists only of 𝑟, 
then r is the preorder traversal of T . 
Otherwise, suppose that T1, T2, . . . , Tn are the 
subtrees 𝑎𝑡 𝒓 from left to right in T . The 
preorder traversal begins by visiting  𝑟. It 
continues by traversing T1 in preorder, then T2 

in preorder, and so on, until Tn is traversed in 
preorder. For example, the preorder traversal 
of tree T given below is shown in figure Y: 

 

2. Inorder traversal: Let T be an ordered 
rooted tree with root r. If T consists only of r, 
then r is the inorder traversal of T . Otherwise, 
suppose that T1, T2, . . . , Tn are the subtrees at 
r from left to right. The inorder traversal 
begins by traversing T1 in inorder, then visiting 
r. It continues by traversing T2 in inorder, then 
T3 in inorder, . . . , and finally Tn in inorder. For 
example, the preorder traversal of tree T 
given below is shown in figure Z. 

3. Postorder traversal: Let T be an ordered 
rooted tree with root r. If T consists only of r, 
then r is the postorder traversal of T. 
Otherwise, suppose that T1, T2, . . . , Tn are the 
subtrees at r from left to right. The postorder 
traversal begins by traversing T1 in postorder, 
then T2 in postorder, . . . , then Tn in 
postorder, and ends by visiting r. For example, 
the preorder traversal of given tree T is shown 
in figure V.  
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Note: We can uniquely draw a binary tree when its preorder and inorder traversal are given or when 
its inorder and postorder traversal are given. 

REPRESENTING EXPRESSIONS USING TREES 

We can represent complicated expressions, such as compound propositions, combinations of sets, 
and arithmetic expressions using ordered rooted trees, where the internal vertices represent 
operations, and the leaves represent the variables or numbers. Each operation operates on its left 
and right subtrees (in that order).  

Operators: + (addition), − (subtraction), ∗ (multiplication), / (division), and ↑ (exponentiation). 

Example 1: Represent the expression ((𝑥 +  𝑦) ↑ 2)  + ((𝑥 −  4)/3) using a tree. 
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Solution: We build the tree representing given expression in bottom up fashion as follows:

 

Example 2: Figure X given below shows the trees representing (𝒙 +  𝒚)/(𝒙 +  𝟑),   (𝒙 +  (𝒚/𝒙))  +
 𝟑, and   𝒙 +  (𝒚/(𝒙 +  𝟑)). 

 
 

 

An inorder traversal of the binary tree representing an expression produces the original expression 

with the elements and operations in the same order as they originally occurred, except for unary 
operations, which instead immediately follow their operands. For instance, inorder traversals of the 

above binary tree, which represent the expressions (x + y)/(x + 3), (x + (y/x)) + 3, all lead to the infix 

expression x + y/x + 3. To make such expressions unambiguous it is necessary to include parentheses 

in the inorder traversal whenever we encounter an operation. The fully parenthesized expression 

obtained in this way is said to be in infix form. 

We obtain the prefix form (or Polish notation, named after the Polish logician Jan Lukasiewicz.) of an 

expression when we traverse its rooted tree in preorder.  

We obtain the postfix form (or reverse Polish notation) of an expression by traversing its binary tree 

in postorder. 
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Note: Both prefix and postfix forms are unambiguous, and therefore do not require parenthesis. 
They do not require precedence and associativity rules and thus, are easy to parse. Furthermore, 
they can be evaluated easily without scanning back and forth. So, they are used extensively in 
computer science. Such expressions are especially useful in the construction of compilers. 

EVALUATION OF EXPRESSIONS 

Evaluating a prefix expression: In the prefix form, a binary operator, such as +, precedes its two 
operands. Hence, we can evaluate an expression in prefix form by working from right to left. When 
we encounter an operator, we perform the corresponding operation with the two operands 
immediately to the right of this operand. Also, whenever an operation is performed, we consider the 
result a new operand. 

Evaluating a postfix expression:In the postfix form of an expression, a binary operator follows its 
two operands. So, work from left to right, carrying out operations whenever an operator follows two 
operands. After an operation is carried out, the result of this operation becomes a new operand. 

The figure given below illustrates both the methods:

 

 

Note: in order to find the prefix or postfix form for a given expression, represent the expression 
using a tree, then traverse the tree as per requirement. 
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Example: Find the ordered rooted tree representing the compound proposition (￢(𝑝 ∧  𝑞))  ↔
 (￢𝑝 ∨￢𝑞). Then use this rooted tree to find the prefix, postfix, and infix forms of this expression. 

Solution: construct the rooted tree as shown:

 

Now traversing the tree in preorder yields the prefix expression: ↔￢ ∧ 𝑝𝑞 ∨￢𝑝￢𝑞 

And traversing the tree in postorder yields the postfix expression: 𝑝𝑞 ∧￢𝑝￢𝑞￢ ∨↔ 

And traversing the tree in inorder (including parentheses), yields the infix expression: (￢(𝑝 ∧
 𝑞))  ↔  ((￢𝑝)  ∨  (￢𝑞)) 

SPANNING TREES 

Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every 
vertex of G. 

A simple graph with a spanning tree must be connected, because there is a path in the spanning tree 
between any two vertices. The converse is also true; that is, every connected simple graph has a 
spanning tree.  

Example: Find a spanning tree of the simple graph G shown in Figure X. 

 
Solution: The graph G is connected, but it is not a tree because it contains simple circuits. Remove 
the edge {𝑎, 𝑒}. This eliminates one simple circuit, and the resulting subgraph is still connected and 
still contains every vertex of G. Next remove the edge {𝑒, 𝑓 } to eliminate a second simple circuit. 
Finally, remove edge {𝑐,𝑔} to produce a simple graph with no simple circuits. This subgraph is a 
spanning tree, because it is a tree that contains every vertex of G. The sequence of edge removals 
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used to produce the spanning tree is illustrated in Figure Y.

 

 

Algorithms for producing spanning trees: 

Finding a spanning tree by removing edges (as was done in above example) is inefficient, because it 
requires that simple circuits be identified. Instead of constructing spanning trees by removing edges, 
spanning trees can be built up by successively adding edges. Two algorithms based on this principle 
are: 

1. DFS (depth-first search) 

Procedure: Arbitrarily choose a vertex of the graph as the root. Form a path starting at this vertex by 
successively adding vertices and edges, where each new edge is incident with the last vertex in the 
path and a vertex not already in the path. Continue adding vertices and edges to this path as long as 
possible. If the path goes through all vertices of the graph, the tree consisting of this path is a 
spanning tree. However, if the path does not go through all vertices, more vertices and edges must 
be added. Move back to the next to last vertex in the path, and, if possible, form a new path starting 
at this vertex passing through vertices that were not already visited. If this cannot be done, move 
back another vertex in the path, that is, two vertices back in the path, and try again. 

Repeat this procedure, beginning at the last vertex visited, moving back up the path one vertex at a 
time, forming new paths that are as long as possible until no more edges can be added. Because the 
graph has a finite number of edges and is connected, this process ends with the production of a 
spanning tree. Each vertex that ends a path at a stage of the algorithm will be a leaf in the rooted 
tree, and each vertex where a path is constructed starting at this vertex will be an internal vertex. 
Depth-first search is also called backtracking, because the algorithm returns to vertices previously 
visited to add paths. An example of the DFS follows.
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2. BFS (breadth-first search) 

Procedure: Arbitrarily choose a root from the vertices of the graph. Then add all edges incident to 
this vertex. The new vertices added at this stage become the vertices at level 1 in the spanning tree. 
Arbitrarily order them. Next, for each vertex at level 1, visited in order, add each edge incident to 
this vertex to the tree as long as it does not produce a simple circuit. Arbitrarily order the children of 
each vertex at level 1. This produces the vertices at level 2 in the tree. Follow the same procedure 
until all the vertices in the tree have been added. The procedure ends because there are only a finite 
number of edges in the graph. A spanning tree is produced because we have produced a tree 
containing every vertex of the graph. An example of breadth-first search follows. 

 

DFS AND BFS for digrected graphs:  

Both depth-first search and breadth-first search can be modified so that they run on a directed 
graph. However, the output will not necessarily be a spanning tree, but rather a spanning forest.  

Q. How many edges must be removed from a connected graph with n vertices and m edges to 
produce a spanning tree? 

Solution: note that the number of vertices in resulting tree = 𝑛. And number of edges in resulting 
tree =  𝑛 − 1. Thus number of edges that must be removed =  𝑚 −  (𝑛 − 1) = 𝑚 − 𝑛 + 1. 

Q. How many edges must be removed to produce a spanning forest of a graph with n vertices , m 
edges and c connected components? 

Solution: 𝑚 − 𝑛 + 𝑐. 

MINIMUM SPANNING TREE 

A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest 
possible sum of weights of its edges. 

There may be more than one minimum spanning tree for a given connected weighted simple graph. 
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ALGORITHMS FOR CONSTRUCTING MINIMUM SPANNING TREES  

1. Prim’s algorithm: (Given by Robert Prim, 1957). 
a. Choose any edge with smallest weight and put it into the spanning tree T. 
b. Successively add to the tree T edges of minimum weight that are incident to a vertex 

already in the tree, never forming a simple circuit with those edges already in the 
tree. 

c. Stop when 𝑛 −  1  edges have been added. 
 

2. Kruskal’s algorithm : (Given by Joseph Kruskal, 956). 
a. Choose an edge in the graph with minimum weight. 
b. Successively add any edge (not necessarily incident to a vertex already in the tree, 

unlike Kruskal’s algorithm) with minimum weight that do not form a simple circuit 
with those edges already chosen.  

c. Stop after n − 1 edges have been selected. 

Note: When there is more than one edge with the same weight, arbitrarily choose one of 
them,(except when ordering of edges is given).  

Comparison: 

Both Prim’s and Kruskal’s algorithms are greedy algorithms (greedy algorithm is a procedure that 
makes an optimal choice at each of its steps i.e local optimal choice). The overall solution produced 
by greedy algorithm may not be optimal. However, both Prim’s and Kruskal’s algorithms produce 
optimal solution. 

The time complexity of Prim’s algorithm is 𝑂(𝑒 log𝑣) and  that of Kruskal’s algorithm is 𝑂(𝑒 log 𝑒). 
Thus, Kruskal’s algorithm is preferred when the graph is sparse (contains relatively few edges). 

Example: The workings of Prim’s and Kruskal’s algorithm for the weighted graph G are shown as: 
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